Robust multigrid preconditioners for the high-contrast biharmonic plate equation

نویسندگان

  • Burak Aksoylu
  • Zuhal Yeter
چکیده

We study the high-contrast biharmonic plate equation with HCT and Morley discretizations. We construct a preconditioner that is robust with respect to contrast size and mesh size simultaneously based on the preconditioner proposed by Aksoylu et al. (2008, Comput. Vis. Sci. 11, pp. 319–331). By extending the devised singular perturbation analysis from linear finite element discretization to the above discretizations, we prove and numerically demonstrate the robustness of the preconditioner. Therefore, we accomplish a desirable preconditioning design goal by using the same family of preconditioners to solve elliptic family of PDEs with varying discretizations. We also present a strategy on how to generalize the proposed preconditioner to cover high-contrast elliptic PDEs of order 2k, k > 2. Moreover, we prove a fundamental qualitative property of solution of the high-contrast biharmonic plate equation. Namely, the solution over the highly-bending island becomes a linear polynomial asymptotically. The effectiveness of our preconditioner is largely due to the integration of this qualitative understanding of the underlying PDE into its construction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust preconditioners for the high-contrast Stokes problem

We study the Stokes equation with high-contrast viscosity coefficient and this regime corresponds to a small Reynolds number regime because viscosity is inversely proportional to the Reynolds number. Numerical solution to the Stokes flow problems especially with high-contrast variations in viscosity is critically needed in the computational geodynamics community. One of the main applications of...

متن کامل

Multigrid Preconditioners for Bi-cgstab for the Sparse-grid Solution of High-dimensional Anisotropic Diffusion Equation

Robust and efficient solution techniques are developed for high-dimensional parabolic partial differential equations (PDEs). Presented is a solver based on the Krylov subspace method Bi-CGSTAB preconditioned with d-multigrid. Developing the perfect multigrid method, as a stand-alone solver for a single problem discretized on a particular grid, often requires a lot of optimal tuning and expert i...

متن کامل

DELFT UNIVERSITY OF TECHNOLOGY REPORT 13-11 Evaluation of Multilevel Sequentially Semiseparable Preconditioners on CFD Benchmark Problems Using IFISS

This paper studies a new preconditioning technique for sparse systems arising from discretized partial differential equations (PDEs) in computational fluid dynamics (CFD), which exploit the multilevel sequentially semiseparable (MSSS) structure of the system matrix. MSSS matrix computations give a data-sparse way to approximate the LU factorization of a sparse matrix from discretized PDEs in li...

متن کامل

Robust multigrid preconditioners for cell-centered finite volume discretization of the high-contrast diffusion equation

We study a conservative 5-point cell-centered finite volume discretization of the high-contrast diffusion equation. We aim to construct preconditioners that are robust with respect to the magnitude of the coefficient contrast and the mesh size simultaneously. For that, we prove and numerically demonstrate the robustness of the preconditioner proposed by Aksoylu et al. (2008, Comput. Vis. Sci. 1...

متن کامل

Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation∗

Within the framework of shifted-Laplace preconditioners [Erlangga, Vuik, Oosterlee, Appl. Numer. Math., 50(2004), pp.409–425] for the Helmholtz equation, different methods for the approximation of the inverse of a complex-valued Helmholtz operator are discussed. The performance of the preconditioner for Helmholtz problems at high wavenumbers in heterogeneous media is evaluated. Comparison with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2011